
Display calculi in non-classical logics

Revantha Ramanayake

Vienna University of Technology (TU Wien)

Teaching Logic and Prospects of its Development
Kyiv, May 15–17, 2014

Revantha Ramanayake (TU Wien) Display calculi in non-classical logics 1 / 43



Hilbert’s Program (around 1922)

Proofs are the essence of mathematics—to establish a theorem.. present
a proof!
Historically, proofs were not the objects of mathematical investigations
(unlike numbers, triangles. . . )
Foundational crisis of mathematics (early 1900s)—formal development of
the logical systems underlying mathematics
In Hilbert’s Proof theory : proofs are mathematical objects.
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Hilbert calculus

Mathematical investigation of proofsf formal definition of proof
Hilbert calculus fulfils this role.

A Hilbert calculus for propositional classical logic. Axiom schemata:

Ax 1: A→ (B → A)

Ax 2: (A→ (B → C))→ ((A→ B)→ (A→ C))

Ax 3: (¬A→ ¬B)→ ((¬A→ B)→ A)

and the rule of modus ponens:

A A→ B
B

Read A↔ B as (A→ B) ∧ (B → A). More axioms:

Ax 4: A ∨ B ↔ (¬A→ B) Ax 5: A ∧ B ↔ ¬(A→ ¬B)
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Derivation of A→ A

Definition
A formal proof (derivation) of B is the finite sequence C1,C2, . . . ,Cn ≡ B of
formulae where each element Cj is an axiom instance or follows from two
earlier elements by modus ponens.

1 ((A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))) Ax 2
2 (A→ ((A→ A)→ A)) Ax 1
3 ((A→ (A→ A))→ (A→ A)) MP: 1 and 2
4 (A→ (A→ A)) Ax 1
5 A→ A MP: 3 and 4

Not easy to find! Proof has no clear structure (wrt A→ A)
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Natural deduction and the sequent calculus

Gentzen: proving consistency of arithmetic in weak extensions of finitistic
reasoning.
Hilbert calculus not convenient for studying the proofs (lack of structure).
Gentzen introduces Natural deduction which formalises the way
mathematicians reason.
Gentzen introduced a proof-formalism with even more structure: the
sequent calculus.
Sequent calculus built from sequents X ` Y where X ,Y are
lists/sets/multisets of formulae
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Sequent calculus

sequent:

antecedent︷             ︸︸             ︷
A1,A2, . . . ,Am `︸︷︷︸

turnstile

succedent︷            ︸︸            ︷
B1,B2, . . . ,Bn

sequent calculus rule:
(S0,S1, . . . ,Sk
are sequents)

k ≥ 0 premises︷                  ︸︸                  ︷
S1 . . . Sk

S︸︷︷︸
conclusion

Typically a rule for introducing each connective in the antecedent and
succedent.
A 0-premise rule is called an initial sequent

Definition (derivation)

A derivation in the sequent calculus is an initial sequent or a rule applied to
derivations of the premise(s).
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The sequent calculus SCp for classical logic Cp

initp,X ` Y ,p ⊥l
⊥,X ` Y

X ` Y ,A
¬l

¬A,X ` Y
A,X ` Y

¬r
X ` Y ,¬A

A,B,X ` Y
∧lA ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B
A,X ` Y B,X ` Y

∨lA ∨ B,X ` Y
X ` Y ,A,B

∨r
X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→lA→ B,X ` Y

A,X ` Y ,B
→r

X ` Y ,A→ B

Here X ,Y are sets of formulae (possibly empty)
There is a rule introducing each connective in the antecedent, succedent
Aside: this calculus differs from Gentzen’s calculus
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Soundness and completeness of SCp for Cp

Need to prove that SCp is actually a sequent calculus for Cp.

Theorem
For every formula A we have: `A is derivable in SCp ⇔ A ∈ Cp.

(⇒) direction is soundness.

(⇐) direction is completeness.
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Proof of completeness

Need to show: A ∈ Cp ⇒ `A derivable in SCp.

First show that A,X ` Y ,A is derivable (induction on size of A).

Show that every axiom of Cp is derivable (easy, below) and modus ponens
can be simulated in SCp (not clear)

A,A→ (B → C) ` C,A
B,A ` C,A

B,A ` C,B r ,B,A ` C
B → C,B,A ` C

B,A,A→ (B → C) ` C
A,A→ B, (A→ (B → C)) ` C

A→ B, (A→ (B → C)) ` (A→ C)

(A→ (B → C)) ` (A→ B)→ (A→ C)

` (A→ (B → C))→ ((A→ B)→ (A→ C))
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How to simulate modus ponens

Gentzen’s solution: to simulate modus ponens (below left) first add a new rule
(below right) to SCp:

A A→ B
B

X ` Y ,A A,X ` Y
cutX ` Y

The following instance of the cut-rule illustrates the simulation of modus
ponens.

` A
` A→ B

A ` A B ` B
A→ B,A ` B

A ` B cut
` B

So: A ∈ Cp ⇒ `A derivable in SCp + cut !
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Proof of soundness

Need to show: `A derivable in SCp + cut ⇒ A ∈ SCp.

We need to interpret SCp + cut derivations in Cp.

For sequent S A1,A2, . . . ,Am ` B1,B2, . . . ,Bn

define translation τ(S) A1 ∧ A2 ∧ . . . ∧ Am → B1 ∨ B2 ∨ . . . ∨ Bn

Comma on the left is conjunction, comma on the right is disjunction.

Translations of the intial sequents are theorems of Cp

p ∧ X → Y ∨ p ⊥ ∧ X → Y

Show for each remaining rule ρ: if the translation of every premise is a
theorem of Cp then so is the translation of the conclusion.

For
A,X ` B

X ` A→ B
need to show: A ∧ X → B

X → (A→ B)
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The cut-rule is undesirable in SCp + cut

We have shown

Theorem
For every formula A we have: `A is derivable in SCp + cut ⇔ A ∈ Cp.

The subformula property states that every formua in a premise appears
as a subformula of the conclusion.
If all the rules of the calculus satisfy this property, the calculus is analytic
Analyticity is crucial to using the calculus (for consistency, decidability. . . )
SCp + cut is not analytic because:

X ` Y ,A A,X ` Y
cutX ` Y

We want to show: `A is derivable in SCp ⇔ A ∈ Cp
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Gentzen’s Hauptsatz (main theorem): cut-elimination

Theorem
Suppose that δ is a derivation of X ` Y in SCp + cut. Then there is a
transformation to eliminate instances of the cut-rule from δ to obtain a
derivation δ′ of X ` Y in SCp.

Since `A is derivable in SCp + cut ⇔ A ∈ Cp:

Theorem
For every formula A we have: ` A is derivable in SCp if and only if A ∈ Cp.
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Applications: Consistency of classical logic

Consistency of classical logic is the statement that A ∧ ¬A < Cp.

Theorem
Classical logic is consistent.

Proof by contradiction. Suppose that A ∧ ¬A ∈ Cp. Then A ∧ ¬A is derivable
in SCp (completeness). Let us try to derive it (read upwards from ` A ∧ ¬A):

` A
A `
` ¬A

` A ∧ ¬A

So ` A and A ` are derivable. Thus ` must be derivable in SCp + cut (use cut)
and hence in SCp (by cut-elimination). This is impossible (why?) QED.

Theorem
Decidability of Cp.

Given a formula A, do backward proof search in SCp on ` A. Since
termination is guaranteed, we can decide if A is a theorem or not. QED.
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Looking beyond the sequent calculus

Structural proof theory is the branch of logic studies the general structure
and properties of proofs. Typically, this is achieved by the study of proof
calculi that support the notion of an analytic proof.
Aside from proofs of consistency, proof-theoretic methods enable us to
extract other meta-logical results (decidability and complexity bounds,
interpolation)
Many more logics of interest than just first-order classical and
intuitionistic logic
How to give a proof-theory to these logics? Want analytic calculi with
modularity
In a modular calculus we can add rules corresponding to (suitable)
axiomatic extensions and preserve analyticity.
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Some nonclassical logics

Consider a sequent X ` Y built from lists X ,Y (rather than sets or
multisets) then A,A,X ` Y and A,X ` Y are no longer equivalent (without
contraction). Also A,B,X ` Y and B,A,X ` Y are not equivalent (without
exchange). Even more generally, (A,B),X ` Y and A, (B,X ) ` Y are not
equivalent (without associativity). The logics obtained by removing these
properties are called substructural logics.

An intermediate logic L is a set of formulae closed under modus ponens
such that intuitionistic logic Ip ⊆ L ⊆ Cp.

Modal logics extend classical language with modalities � and ^. The
modalities were traditionally used to qualify statements like “it is possible
that it will rain today". Tense logics include the temporal modalities �
and �. Closed under modus ponens and necessitation rule (A/�A).

Sequent calculus inadequate for treating these logics (eg. no analytic sequent
calculus for modal logic S5 despite analytic sequent calculus for S4)
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Display Calculus

Introduced as Display Logic (Belnap, 1982).
Extends sequent calculus by introducing new structural connectives that
interpret the logical connectives (enrich language)
A structure is built from structural connectives and formulae.
A display sequent: X ` Y for structures X and Y
Display property. A substructure in X [U] ` Y equi-derivable (displayable)
as U `W or W ` U for some W .
Key result. Belnap’s general cut-elimination theorem applies when the
rules of the calculus satisfy C1–C8 (display conditions)
Display calculi have been presented for substructural logics, modal and
poly-modal logics, tense logic, bunched logics, bi-intuitionistic logic. . .
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Display calculi generalise the sequent calculus

Here is the sequent calculus SCp once more:

initp,X ` Y ,p ⊥l
⊥,X ` Y

X ` Y ,A
¬l

¬A,X ` Y
A,X ` Y

¬r
X ` Y ,¬A

A,B,X ` Y
∧lA ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B
A,X ` Y B,X ` Y

∨lA ∨ B,X ` Y
X ` Y ,A,B

∨r
X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→lA→ B,X ` Y

A,X ` Y ,B
→r

X ` Y ,A→ B
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Display calculi generalise the sequent calculus

Let’s add a new structural connective ∗ for negation.

initp,X ` Y ,p ⊥l
⊥,X ` Y

∗A,X ` Y
¬l

¬A,X ` Y
X ` Y , ∗A

¬r
X ` Y ,¬A

A,B,X ` Y
∧lA ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B
A,X ` Y B,X ` Y

∨lA ∨ B,X ` Y
X ` Y ,A,B

∨r
X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→lA→ B,X ` Y

A,X ` Y ,B
→r

X ` Y ,A→ B
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Add the display rules

The addition of the following rules permit the display property:

Definition (display property)

The calculus has the display property if for any sequent X ` Y containing a
substructure U, there is a sequent U `W or W ` U for some W such that

X ` Y
U `W

or
X ` Y
W ` U

We say that U is displayed in the lower sequent.

X ,Y ` Z

X ` Z , ∗Y

X ,Y ` Z

Y ` ∗X ,Z

X ` Y ,Z

X , ∗Z ` Y
X ` Y ,Z

∗Y ,X ` Z
∗X ` Y
∗Y ` X

X ` ∗Y
Y ` ∗X

∗ ∗ X ` Y
X ` Y

X ` ∗ ∗ Y
X ` Y

X ` •Y
•X ` Y
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Using the display rules

Examples:

∗(A, ∗B) ` ∗(C,D)

∗ ∗ (C,D) ` A, ∗B

∗A, ∗ ∗ (C,D) ` ∗B

B ` ∗(∗A, ∗ ∗ (C,D))

B is displayed

∗(A, ∗B) ` ∗(C,D)

C,D ` ∗ ∗ (A, ∗B)

D ` ∗C, ∗ ∗ (A, ∗B)

D is displayed
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Specify the properties of the structural connectives

We want weakening, contraction, exchange, associativity.

Here I is a structural constant for the empty list.

X ` Z
I,X ` Z

X ` Z
X ` I,Z

I ` Y
∗I ` Y

X ` I
X ` ∗I

X ` Z
Y ,X ` Z

X ` Z
X ,Y ` Z

X ,Y ` Z
Y ,X ` Z

Z ` X ,Y
Z ` Y ,X

X ,X ` Z
X ` Z

Z ` X ,X
Z ` X

X1, (X2,X3) ` Z

(X1,X2),X3 ` Z

Z ` X1, (X2,X3)

Z ` (X1,X2),X3
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Display calculi generalise the sequent calculus

The presence of the display rules permit the following rewriting of the rules:

initp ` p ⊥l
⊥ ` I

∗A ` Y
¬l

¬A ` Y
X ` ∗A

¬r
X ` ¬A

A,B ` Y
∧lA ∧ B ` Y

X ` A X ` B
∧r

X ` A ∧ B
A ` Y B ` Y

∨lA ∨ B ` Y
X ` A,B

∨r
X ` A ∨ B

X ` A B ` Y
→lA→ B ` ∗X ,Y

A,X ` B
→r

X ` A→ B

The formulae are called principal formulae. The X ,Y are context variables.
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Sequent calculus to display calculus

From a procedural point of view, we obtained the display calculus δCp for Cp
from the sequent calculus by

1 Addition of a structural connective ∗ for negation
2 Addition of the display rules to yield the display property
3 Additional structural rules for exchange, weakening, contraction etc.
4 Rewriting the logical rules so the principal formulae in the conclusion are

all of the antecedent or succedent

Before we consider how to construct a display calculus utilising the properties
of the logic, let us introduce Belnap’s general cut-elimination theorem. . .

Revantha Ramanayake (TU Wien) Display calculi in non-classical logics 24 / 43



Belnap’s general cut-elimination theorem

Belnap showed that any display calculus satisfying the display conditions has
cut-elimination. The display conditions C1–C8 are syntactic conditions on the
rules of the calculus.

Theorem
A display calculus that satisfies the Display Conditions C2–C8 has
cut-elimination. If C1 is satisfied, then the calculus has the subformula
property.

Proof ‘follows’ Gentzen’s cut-elimination, uses display property.

Only C8 is non-trivial to verify.

Verifying C1–C8 is trivial for rules built only from structures (structural rules)
since C8 does not apply!

X ` Z
I,X ` Z

X ` Z
X ` I,Z

I ` Y
∗I ` Y

X ` I
X ` ∗I

X ` Z
Y ,X ` Z

X ` Z
X ,Y ` Z
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Another look at constructing display calculi

Some questions that arise when constructing a display calculus include:
For which logics can we give a display calculus?
How do we know which structural connectives to add?
How to choose the display rules to ensure display property?

Extending the display calculus via structural rules is convenient because the
conditions for cut-elimination are easy to check (because C8 is not applicable)

Suppose we have a display calculus for the logic L. For which extensions
of L can we obtain structural rule extensions?
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(Associative) Bi-Lambek logic

Obtain from the sequent calculus SCp for classical logic by removing
assumptions (on the structural connective comma) of commutativity,
contraction and weakening in a sequent A1, . . . ,An ` B1, . . . ,Bm

Or define algebraically.

A structure A = 〈A,≤,≤,→,←,∧,⊗,1,>, >− , −< ,∨,⊕,0,⊥〉 is a BiL-algebra
(short for Bi-Lambek algebra) if:
1. 〈A,≤,∨,∧,>,⊥〉 is a lattice with least element ⊥ = >>−> = >−<> and

greatest element > = ⊥ → ⊥ = ⊥ ← ⊥.

2. (a) 〈A,⊗,1〉 is a groupoid with identity 1 ∈ A (b) 〈A,⊗,0〉 is a groupoid with
co-identity 0 ∈ A.

3. (a) z ⊗ (x ∨ y) ⊗ w = (z ⊗ x ⊗ w) ∨ (z ⊗ y ⊗ w) for every x , y , z ∈ A
(b) z ⊕ (x ∧ y) ⊕ w = (z ⊕ x ⊕ w) ∧ (z ⊕ y ⊕ w) for every x , y , z,w ∈ A

4. (a) x ⊗ y ≤ z iff x ≤ z ← y iff y ≤ x → z, for every x , y , z ∈ A
(b) z ≤ x ⊕ y iff x >− z ≤ y iff z −< y ≤ x , for every x , y , z ∈ A.

The residuation properties (in red) crucial for constructing the display calculus.
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Residuated pairs for Bi-Lambek logic
Recall the residuation properties. For every x , y , z ∈ A:

x ⊗ y ≤ z ⇔ x ≤ z ← y ⇔ y ≤ x → z
z ≤ x ⊕ y ⇔ x >− z ≤ y ⇔ z −< y ≤ x

Assign the following structural connectives to the logical connectives:

x
,︷︸︸︷
⊗ y ≤ z ⇔ x ≤ z

<︷︸︸︷
← y ⇔ y ≤ x

>︷︸︸︷
→ z

z ≤ x ⊕︸︷︷︸
,

y ⇔ x >−︸︷︷︸
>

z ≤ y ⇔ z −<︸︷︷︸
<

y ≤ x

This gives us the following rewrite rules.

A,B ` Y
⊗lA ⊗ B ` Y

X ` A,B
⊕r

X ` A ⊕ B
X ` Φ
X ` 0

A < B ` Y
−< lA−<B ` Y

X ` A < B
←r

X ` A← B
Φ ` X
1 ` X

A > B ` X
>− lA>−B ` Y

X ` A > B
→r

X ` A→ B
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Adding the display rules

x
,︷︸︸︷
⊗ y ≤ z ⇔ x ≤ z

<︷︸︸︷
← y ⇔ y ≤ x

>︷︸︸︷
→ z

z ≤ x ⊕︸︷︷︸
,

y ⇔ x >−︸︷︷︸
>

z ≤ y ⇔ z −<︸︷︷︸
<

y ≤ x

This gives us the following rewrite rules.

A,B ` Y
⊗lA ⊗ B ` Y

X ` A,B
⊕r

X ` A ⊕ B
X ` Φ
X ` 0

A < B ` Y
−< lA−<B ` Y

X ` A < B
←r

X ` A← B
Φ ` X
1 ` X

A > B ` X
>− lA>−B ` Y

X ` A > B
→r

X ` A→ B
And the following display rules:

X ,Y ` Z
X ` Z < Y
Y ` X > Z

Z ` X ,Y
X > Z ` Y
Z < Y ` X
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Computing the decoding rules

A,B ` Y
⊗lA ⊗ B ` Y

X ` A,B
⊕r

X ` A ⊕ B
X ` Φ
X ` 0

A < B ` Y
−< lA−<B ` Y

X ` A < B
←r

X ` A← B
Φ ` X
1 ` X

A > B ` X
>− lA>−B ` Y

X ` A > B
→r

X ` A→ B

Here are the missing decoding rules (Goré, 1998)

X ` A Y ` B
⊗r

X ,Y ` A ⊗ B
A ` X B ` Y

⊕lA ⊕ B ` X ,Y 0 ` Φ

X ` A B ` Y
−< r

X < Y ` A−<B
A ` X Y ` B

←lA← B ` X < Y Φ ` 1

A ` X Y ` B >− r
X > Y ` A>−B

X ` A B ` Y
→lA→ B ` X > Y
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Rewrite rules are invertible

Constructing the decoding rules is systematic (but not obvious, reasoning not
shown here) and enforces:

Lemma
Every rewrite rule is invertible.

For example, consider the rewrite rule and decoding rule for >− :

A > B ` Y
>− lA>−B ` Y

A ` X Y ` B >− r
X > Y ` A>−B

Here is the derivation witnessing invertibiltiy of >− l.

A ` A B ` B >− r
A > B ` A>−B A>−B ` Y cutA > B ` Y
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Constructing a display calculus: summary

The residuation property tells us which connectives are interpreted as a
structural connective in which position
The residuation property then gives the display rules
Add remaining introduction rules (decoding rules).
axioms for weakening, contraction etc. are converted to structural rules.
(to be shown)
The construction is focussed on the logical connectives that are
residuated. The other connectives in the language (lattice connectives)
do not introduce new structural connectives.

I ` X
>l

> ` X
X ` I

⊥r
X ` ⊥

A ◦ B ` X
∧lA ∧ B ` X

X ` A X ` B
∧r

X ` A ∧ B
A ` X B ` X

∨lA ∨ B ` X
X ` A • B

∨r
X ` A ∨ B
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Interpreting sequents

Define the interpretation functions l and r from structures into Bi-Lambek
formulae.

l(A) = A r(A) = A
l(I) = > r(I) = ⊥

l(Φ) = 1 r(Φ) = 0
l(X ,Y ) = l(X ) ⊗ l(Y ) r(X ,Y ) = l(X ) ⊕ r(Y )

l(X > Y ) = l(X )>− l(Y ) r(X > Y ) = r(X )→ r(Y )

l(X < Y ) = l(X )−< l(Y ) r(X > Y ) = r(X )← r(Y )

A sequent X ` Y is interpreted as l(X ) ≤ r(Y ).
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Adding structural rules

Some structural rules are straightforward to determine.

X ` Y
X ` Y ,Z

X ` Y
X ,Z ` Y

X ` Y ,Z
X ` Z ,Y

X ,Z ` Y
Z ,X ` Y

X ` Y ,Y
X ` Y

X ,X ` Y
X ` Y

X ` (Y ,Z ),U
X ` Y , (Z ,U)

(X ,Y ),Z ` U
X , (Y ,Z ) ` U

Structural rules for the additive unit 1 and the multiplicative structural
connectives:

I,X ` Y
X ` Y

X , I ` Y

X ` Y , I
X ` Y

X ` I,Y
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Structural rule extensions of display calculi: a general
recipe

Logic L

suitable axiomatic extension
��

oo // base display calculus C

structural rule extension
��

L + {A1, . . . ,An} oo // C+ ρ1 + . . . + ρm

Generalises method for obtaining hypersequent structural rules from
axioms (Ciabattoni et al., 2008)
The approach is language and logic independent; purely syntactic
conditions on the base calculus
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Obtaining a structural rule from a Hilbert axiom
δBiFL is a display calculus for Bi-Lambek logic satisfying C1–C8. Let us
obtain the structural rule extension of δBiFL for the logic
BiFL + (p → 0) ⊕ ((p → 0)→ 0).

STEP 1. Start with the axiom (below left) and apply all possible invertible
rules backwards (below right).

I ` (p → 0) ⊕ ((p → 0)→ 0)

stop here: →l not invertible
I < ((p → 0) > Φ) ` p > Φ

drs, 0r
I < ((p → 0) > 0) ` p > 0

→r
I < ((p → 0) > 0) ` p → 0

drs
I < (p → 0) ` (p → 0) > 0

→r
I < (p → 0) ` (p → 0)→ 0

drs
I ` (p → 0), ((p → 0)→ 0)

⊕r
I ` (p → 0) ⊕ ((p → 0)→ 0)

So it suffices to introduce a structural rule equivalent to
I < ((p → 0) > Φ) ` p > Φ.

Revantha Ramanayake (TU Wien) Display calculi in non-classical logics 36 / 43



STEP 2. Apply Ackermann’s Lemma.

Lemma

The following rules are pairwise equivalent

S ρ1
X ` A

S A ` L ρ2
X ` L

S
δ1A ` X
S L ` A

δ2
L ` X

where S is a set of sequents, L is a fresh schematic structure variable, and A
is a tense formula.

I < ((p → 0) > Φ) ` p > Φ

d.p.
⇔ p → 0 ` (I < (p > Φ)) > Φ

lem
⇔

L ` p → 0

L ` (I < (p > Φ)) > Φ

d.p.
⇔

L ` p → 0

p ` (I < (L > Φ)) > Φ

lem
⇔

L ` p → 0 M ` p

M ` (I < (L > Φ)) > Φ

Stop when there are no
more formulae in the
conclusion
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STEP 3. Apply all possible invertible rules backwards.

L ` p → 0 M ` p
M ` (I < (L > Φ)) > Φ

⇔

L ` p > Φ

L ` p > 0 M ` p
M ` (I < (L > Φ)) > Φ

The following rule is not a structural rule.

L ` p > Φ M ` p
ρ

M ` (I < (L > Φ)) > Φ

By Belnap’s general cut-elimination theorem, δKt + ρ has cut-elimination.
However it does not have the subformula property.
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STEP 4. Apply all possible cuts (and verify termination)

L ` p > Φ M ` p
ρ

M ` (I < (L > Φ)) > Φ

d.p.
⇔

p ` L > Φ M ` p
ρ

M ` (I < (L > Φ)) > Φ

⇔
M ` L > Φ

ρ′
M ` (I < (L > Φ)) > Φ

One direction is cut, the other direction is non-trivial.

We conclude:

δBiFL + ρ′ is a calculus for BiFL + (p → 0) ⊕ ((p → 0)→ 0) with
cut-elimination and subformula property.
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Summary of the recipe

(1) Invertible rules (2) Ackermann’s lemma (3) invertible rules (4) all possible
cuts

Only certain axioms can be handled
I Because we cannot decompose all connectives in the axiom

(i) we can handle a subformula p → q in negative position (Ackermann’s lemma
will take it to a positive position where→ is invertible).

(ii) but not a subformula A→ q in negative position, where A contains an p → q
in negative position.

II And even if we can, Step (4) ‘cutting step’ should terminate in a structural
rule. Eg. the following is problematic:

p,p ` L > Φ M ` p,p
ρ

M ` (I < (L > Φ)) > Φ

Nevertheless we can capture a large class I2(C) of axioms.
More invertible rules, more axioms! — eg. hypersequent, display calculus for
intermediate logics
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Definition. Amenable calculus

Let C be a display calculus satisfying C1–C8. l and r are functions from structures into
formulae s.t. l(A) = r(A) = A . Also:

(i) X ` l(X ) and r(X ) ` X are derivable.

(ii) X ` Y derivable implies l(X ) ` r(Y ) is derivable.

There is a structure constant I such that the following are admissible:

I ` X IlY ` X
X ` I IrX ` Y

There are associative and commutative binary logical connectives ∨,∧ in C such that

(a)∨ A ` X and B ` X implies ∨(A,B) ` X

(b)∨ X ` A implies X ` ∨(A,B) for any formula B.

(a)∧ X ` A and X ` B implies X ` ∧(A,B)

(b)∧ A ` X implies ∧(A,B) ` X for any formula B.

Theorem (Ciabattoni and R., 2013)

Let C be an amenable calculus for the logic L. Then axiomatic extensions of L by
formulae in I2(C) can be presented via structural rule extensions of C.
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Summary I

The display calculus generalises the sequent calculus by the addition of
new structural connectives.
Display rules yield the display property.
The display property is used to prove Belnap’s general cut-elimination
theorem.
Residuation property central to choosing structural connectives, display
rules.
the display calculus is one of several proof-frameworks proposed to
address the (lack of) analytic sequent calculi for logics of interests. Some
other frameworks include hypersequents, nested sequents, labelled
sequents.
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Summary II

In some frameworks such as the calculus of structures, we can operate
‘inside’ formulae (deep inference). The display calculus (below right)
seems to mimic some notion of deep inference.

` �B
` �(B ∨ B′)

I ` •B
•I ` B
•I ` B,B′

I ` •(B,B′)
Recent work used a display calculus as the starting point for an analytic
calculus for Full intuitionistic linear logic (MILL extended with ⊕). A (deep
inference) nested sequent calculus is then constructed to obtain
complexity, conservativity results (Clouston et al., 2013).
Recall the display calculus is for a fully residuated logic. What if we want
a fragment (FL, intuitionistic, modal logic) of the full Bi-FL, bi-intuitionistic,
tense logic? Conservativity of Bi-L for L required.
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